STELLAR SPECTRA

ASTROPHYSICS

Dr H.T.Sener

Astronomy Term	Definition		
Absolute Magnitude "M"	The apparent magnitude a star would have at 10 parsecs (32.6 light years)		
Apparent Magnitude brightness "m"	Each division is 2.51 times brighter than the next magnitude, sun has m= -26		
Apparent Magnitude scale	A modern version of Hipparchus scale		
Intensity	Power per unit area at the observer: I=P/4πr ²		
Luminosity	Total power radiated by a star (joules/sec=watts), depends on the temperature and distance between the star and the observer. L≈ d ² T ⁴		
Parallax Angle	The shift, relative to the background, caused by a shift in the observer's position.		
Parsec	The distance at which one AU subtends an angle of one arc second (1/3600 th of a degree), 1 pc = 3.26 light years		
Relative Brightness scale	A scale created by in 120 BC where 1 is the brightest star and 6 is the dimmest star		

SUMMARY

HOMEWORK

- Given an absolute magnitude of 3.0, find the apparent magnitude at a distance of 5pc, 10pc, 15pc, 20pc, 50pc and 100pc.
- Plot these data on distance vs apparent magnitude.

How far away must the star be to have an apparent magnitude of 5.0?

HOMEWORK

ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM

Gigahertz (GHz) 10-9 Terahertz (THz) 10-12 Petahertz (PHz) 10-15 Exahertz (EHz) 10-18 Zettahertz (ZHz) 10-21 Vottahertz (YHz) 10-24

A blackbody is an idealized object that absorbs all incident electromagnetic radiation!

Thermal radiation is the radiation emitted by a body in thermal equilibrium due to its temperature!

Thermal radiation comes from oscillations of the atoms!

- An ideal black body must emit thermal radiation. Even if by definition a blackbody absorbs all incident radiation, it still emits radiation. This is not reflected radiation, but radiation which the body emits "from inside" due to the oscillation of the atoms.
- All radiation is absorbed!
- Only if the temperature is increased very strongly and the body starts to glow, radiation in the visible wavelength range is emitted.
- Does not have to be black!

- A blackbody is particularly suitable for the investigation of the spectral distribution of thermal radiation, since the radiation does not contain any reflecting parts of interference sources!
- The emitted thermal radiation of a black body is called blackbody radiation!

REALIZATION OF BLACKBODIES IN PRACTICE (CAVITY RADIATION)

only the cavity or hole - not to the object itself!

SPECTRAL DISTRIBUTION OF BLACKBODY RADIATION (PLANCK SPECTRUM)

Different materials at different temperatures.

Radiation enters through a hole, but does not exit due to absorption.

The wavelength spectrum of blackbody radiation depends only on the temperature and not on the material!

▶ 2000 K

The white : over 3000 K

over 3000 K more ultraviolet radiation (UV radiation)

about 6000 K

Blue giants more than 10,000 Kelvin.

WIEN'S DISPLACEMENT LAW

The maximum of the curve shifts with increasing temperature to ever shorter wavelengths.

The Wien's displacement law can be obtained by determining the maxima of Planck's law.

PLANCK'S LAW

 $\bullet \ c = \lambda \cdot f$

$$I_{s}(\lambda) = \frac{2\pi hc^{2}}{\lambda^{5}} \cdot \frac{1}{\exp\left(\frac{hc}{\lambda k_{B}T}\right) - 1}$$

Planck's Law (wavelength form)

- The radiated intensity = the area under the spectral intensity distribution.
- Planck's law must be integrated over the entire wavelength range or frequency range.

$$\boxed{I = \sigma \cdot T^4} \text{ and } \sigma = \frac{2\pi^5 k_B^4}{15h^3 c^2} = 5,670 \cdot 10^{-8} \frac{W}{m^2 K^4}$$

- The constant quantities can be combined to a new constant: Stefan-Boltzmann constant σ.
- The radiated intensity of a black body is only dependent on the temperature. It increases with the fourth power of the temperature. This is also called Stefan-Boltzmann law.

The intensity of the blackbody radiation in thermal equilibrium is proportional to the fourth power of the temperature!

$$\boxed{I = \sigma \cdot T^4} \text{ and } \sigma = \frac{2\pi^5 k_B^4}{15h^3 c^2} = 5,670 \cdot 10^{-8} \frac{W}{m^2 K^4}$$

The intensity I can be used to determine its energy emitted per unit time.

$$\Phi(T,A) = \boldsymbol{\sigma} \cdot A \cdot T^4$$

EXERCISE

In what wavelength region would you look for a star at T=1000 K?

Þ	Wien's Law	$\lambda_{max} =$	2897, 8 μm K <i>T</i>	
		2,9x10 ⁻⁶ m		

> Your body is about 35C. What is your peak wavelength?

$$\lambda_{max} = \frac{2897, 8 \ \mu \text{m K}}{T}$$

9,4x10⁻⁶ m

Property	Technique	Range of values	
Distance	Trig Parallax	1.3 ⇒ 80pc	
	Spect. Parallax	1 Mpc	
Surface Temp.	Colors, Wein's Law Spectral Types	3000K ⇒ 50000K	
Luminosity	Apparent brightness plus Distance*	$10^{-5} \Rightarrow 10^{6} \mathrm{L}_{\odot}$	
Radius	Stephan's Law	$0.01R_{\odot} \Rightarrow 800R_{\odot}$	
Masses	Binary orbits	$0.08 M_{\odot} \Rightarrow 80 M_{\odot}$	

PHYSICS BEHIND THE CLASSIFICATION

PHYSICS BEHIND THE CLASSIFICATION

Photon A									
Photon A	Wavelength	Frequency	Energy	Velocity	Photon B				
				(in space)					
Red	larger	larger	larger	larger	Blue				
	the same	the same	the same	the same					
	smaller	smaller	smaller	smaller					
Green	larger	larger	larger	larger	Orange				
	the same	the same	the same	the same					
	smaller	smaller	smaller	smaller					
InfraRed	larger	larger	larger	larger	Visual				
	the same	the same	the same	the same					
	smaller	smaller	smaller	smaller					
Visual	larger	larger	larger	larger	Microwave				
	the same	the same	the same	the same					
	smaller	smaller	smaller	smaller					
X-rays	larger	larger	larger	larger	Gamma-ray				
	the same	the same	the same	the same					
	smaller	smaller	smaller	smaller					
(Hint: the speed of <i>all</i> photons is the same.)									

(Hint: the speed of *all* photons is the same.)

RESOURCES

- https://spaceplace.nasa.gov/blue-sky/en/
- http://hyperphysics.phy-astr.gsu.edu/hbase/bbcon.html
- https://www.tec-science.com/thermodynamics/temperature/black-body-radiation/
- https://www.tec-science.com/thermodynamics/temperature/plancks-law-of-blackbody-radiation/
- http://hosting.astro.cornell.edu/academics/courses/astro201/kirchhoff.htm
- http://hyperphysics.phy-astr.gsu.edu/hbase/hyde.html
- https://www.webassign.net/ncchem/bohr.html
- https://collection.sciencemuseumgroup.org.uk/objects/co3632/william-herschels-infrared-prism-prism-optical-demonstration
- https://cas.sdss.org/dr6/en/proj/basic/spectraltypes/lines.asp
- https://www.scienceinschool.org/2007/issue4/spectrometer
- http://www.cs.cmu.edu/~zhuxj/astro/html/spectrometer.html
- https://astro.unl.edu/naap/hydrogen/naap_hydrogen_sg.pdf
- https://astro.unl.edu/naap/hydrogen/hydrogen.html
- https://calgary.rasc.ca/stellarmagnitudes.htm
- https://www.youtube.com/watch?v=iwlMmJs1f5o
- https://earthsky.org/space/what-is-a-parsec
- https://www.astronomynotes.com/index.html

- https://courses.lumenlearning.com/towson-astronomy-2/ chapter/using-spectra-to-measure-stellar-radius-compositionand-motion/
- https://www.nobelprize.org/prizes/themes/how-the-sun-shines-2
- https://sites.ualberta.ca/~pogosyan/teaching/ASTRO_122/lect6/ lecture6.html
- https://pages.uoregon.edu/jimbrau/astr122/Notes/Chapter4.htm
- https://thecuriousastronomer.wordpress.com/tag/spectra/
- https://docs.kde.org/trunk5/en/extragear-edu/kstars/aicolorandtemp.html
- https://www.handprint.com/ASTRO/specclass.html